Key Takeaway:


Elon Muskโ€™sย company called Neuralink, launched in 2016, aims toย implant a piece of technologyย in peopleโ€™s brains that would allow them to control a computer or phone by thought alone. This is otherwise known as aย brain-computer interface.ย 

After years of experimenting on animals, Neuralink recently announced the implantation of one of their devices in the brain of a person.

Yet โ€œneurotechnologyโ€, of which this is a form, holds the promise of alleviating human suffering and allowing people with disabilities to regain lost capacities.

And it raises further questions. Would people without disabilities also embrace technology that directly connects with their brains and nervous systems? What would happen in future if people were able to link themselves to devices, infrastructure and even other peopleโ€™s brains in a kind of brain-computer internet?

Itโ€™s now time to begin to think about those questions. Medical conditions such as locked-in syndrome prevent people from communicating or moving their limbs. Neuralinkโ€™s device is initially aimed at restoring capacities to people with such conditions by controlling a computer cursor to communicate, or using a robotic arm to feed themselves. 

However, the longer term aspirations of the company, as expressed by Musk, include the capacity to summon a self-driving vehicle by thought alone. These aspirations suggest that neurotechnology might connect people to a wide variety of technological systems currently in everyday use.

What are brain-computer interfaces?

Brain-computer interfaces (BCI) detect the electrical activity in the brain connected to a personโ€™s intentions. For example, if a person wants a cursor to move to the right, they might imagine waving their hand. This brain activity is decoded and converted into a command for a cursor. 

This approach can work with a robotic arm, the lights in a smart home, a video game, or even a drone or robot. A BCI can be thought of as a โ€œuniversal controllerโ€, or as the eminent neuroscientist Professor Rafael Yuste has described it, an iPhone for the brain.

Elon Musk
Elon Musk believes BCIs could be used to control self-driving vehicles by thought alone. Frederic Legrand – COMEO / Shutterstock

Neurotechnology can be invasively implanted in the brain or nervous system, or come in the form of wearable technology, such as a headset or earbuds. Air traffic controllers with external headsets can have their brains monitored to alert them when their attention levels are dropping. 

Children in Chinese high schools have already had their brains monitored by teachers. The company Brainwave Science even offers a product to security services and police that can monitor suspectsโ€™ brains during interrogations.

However, things might go even further, as forms of direct brain to brain communication are being tested. Instead of calling your friend or texting them, you might one day communicate telepathically. Rudimentary forms of direct brain to brain communication between humans (and even between humans and various animals) have already been achieved.

Military uses

Various militaries are also interested in the potential of โ€œsuper soldiersโ€ enhanced with neurotechnology, as they could operate more effectively in challenging environments, such as urban settings.

This would incorporate weapon systems, sensing and monitoring the human brains of military personnel in a distributed system of battlefield control. A particularly striking example of this approach comes in the form of the thought-controlled robotic dogs that have recently been demonstrated by the Australian Army.

This brings to mind the fictional Borg civilisation from Star Trek, who are a similar mix of biology and machine parts. The alien Borg are individuals connected by neurotechnology that operate together as an entity. The implications of an interconnected system of humans and machines enabled by neurotechnology is something we should start to think about, along with what values that society might have.

We can envisage all kinds of scenarios. In future, itโ€™s possible that those who operate critical infrastructure in cities could have their brains monitored to prevent accidents. People with mobility issues might increasingly interact with devices in their home, turning lights on and off and controlling domestic robots via their brain-computer interfaces. 

Wider take-up?

At some point, people without disabilities could also decide to dispense with handheld remote control appliances in favour of controlling devices with their brains. Prisoners and offenders in the community could be monitored in real-time to assess their mental states.

In time, these separate applications might start to make connections with each other in service of enhanced efficiency, commercial expediency, and social control. Neurotech could emerge as an essential infrastructure that becomes the key interface of human relationships with technological systems.

What emerges from all of this? There has some been some thinking and action in relation to the human rights and broader legal implications of neurotechnology. But much of the debate is rather individualistic in orientation and neglects the wider societal implications of changing human relationships with technological systems. 

Consequently, we need a discussion about the larger purpose of neurotechnology, its use and implications. This needs input from a variety of groups, such as infrastructure specialists, designers, architects, human computer interaction specialists and community groups.

Neurotechnology is likely to have diverse impacts across society: in the home, the workplace, the criminal justice system and networks of infrastructure.

Teasing out the emerging issues across these different sectors should enable us to anticipate the harms and benefits of neurotechnology. This will allow us to shape its development to support humans and the environment. 

To paraphrase the Borg: resistance may not be futile after all.

Contributor

Recently Published

Key Takeaway: A study has found that humble leaders can become more promotable by growing others through a “humility route”. Human capital theory suggests that employees’ value can be enhanced by investing in their knowledge, skills, and abilities. Humble leaders focus on the learning and growth of their followers, creating human capital value for themselves. […]

Top Picks

Key Takeaway: The current economic climate is particularly concerning for young people, who are often financially worse off than their parents. To overcome this, it is important to understand one’s financial attachment style, which can be secure, anxious, or avoidant. Attachment theory, influenced by childhood experiences and education, can help shape one’s relationship with money. […]
Key Takeaway: Wellness culture, which claims to provide happiness and meaning, has been criticized for its superficial focus on superficial aspects like candles and juice cleanses. Psychological research suggests that long-term wellbeing comes from a committed pursuit of both pleasure and meaning. Martin Seligman’s Perma model, which breaks wellbeing into five pillars: positive emotions, engagement, […]
Key Takeaway: Quantum computing, which uses entanglement to represent information, has the potential to revolutionize everyday life. However, the development of quantum computers has been slow due to the need to demonstrate an advantage over classical computers. Only a few notable quantum algorithms have been developed, such as the BB84 protocol and Shor’s algorithm, which […]
Key Takeaway: China’s leaders have declared a GDP growth target of 5% in 2024, despite facing economic problems and a property crisis. The country’s rapid economic growth has been attributed to market incentives, cheap labor, infrastructure investment, exports, and foreign direct investment. However, none of these drivers are working effectively. The government’s determination to deflate […]

Trending

I highly recommend reading the McKinsey Global Instituteโ€™s new report, โ€œReskilling China: Transforming The Worldโ€™s Largest Workforce Into Lifelong Learnersโ€, which focuses on the countryโ€™s biggest employment challenge, re-training its workforce and the adoption of practices such as lifelong learning to address the growing digital transformation of its productive fabric. How to transform the country […]

Join our Newsletter

Get our monthly recap with the latest news, articles and resources.

Login

Welcome to Empirics

We are glad you have decided to join our mission of gathering the collective knowledge of Asia!
Join Empirics