Key Takeaway:

Hibernation, a deep, deep sleep pattern, has a close link to human history, dating back to the “lotska” in Pskov, Russia, and the Inuit Greenlandic stories in Greenland. It is a complex process that involves reduced calorie intake, low body temperature, and lowered metabolism. Animals that hibernate usually live longer than other species of the same size. Recent studies using epigenetic clocks suggest that hibernation slows down ageing in marmots and bats. This may hold important clues on how to slow down ageing processes. Understanding hibernation may benefit human medicine for treating traumatic brain injuries, severe blood loss, preservation of muscle and bone mass, and better protection during organ transplantation. Long-lived animals like the Greenland shark, naked mole rat, Icelandic clam, and Rougheye rockfish have developed superior mechanisms to protect against ageing. Good quality sleep is connected to longevity, and understanding how nature resolved extreme sleeping patterns may help scientists improve human health.


When the cold and dark winter is setting in, some of us envy animals that can hibernate. This long, deep rest is an example of how nature develops clever solution to difficult problems. In this case, how to survive a long, cold and dark period without much food and water. 

But hibernation has closer links to human history than you might expect. 

An article in a copy of the British Medical Journal from 1900 describes a strange human dormancy-like hibernation called “lotska” that was common among farmers in Pskov, Russia. In this area, food was so scarce during the winter that the problem was solved by sleeping through the dark part of the year. 

Once a day people woke up to eat a piece of bread and drink a glass of water. After the simple meal, they went back to sleep and family members then took turns keeping the fire alive. You will also find descriptions in Inuit Greenlandic stories of a prolonged hibernation-like sleep during the long dark winter months. In parts of Greenland it is dark from November to the end of January.

There is a study from 2020 which suggests the ancient ancestors of man, called hominins, may have been able to hibernate 400,000 years ago. Bones discovered in a cave in Spain show seasonal disruption in growth, suggesting that one of man’s predecessors may have used the same strategy as cave bears to survive long winters.

Animals and hibernation

Hibernation is deeper and more complex than usual sleep, including dramatic changes in metabolism. This long resting period combines several conditions linked to longevity, reduced calorie intake, low body temperature and lowered metabolism.

Animals that hibernate usually live longer compared to other species of the same size. Recent studies using epigenetic clocks, which map activity within genes over time, suggest that hibernation slows down ageing in marmots and bats. So hibernation may hold important clues on how to slow down ageing processes. 

There are different forms of ageing – chronological and biological age. 

Chronological age is actually only about how many revolutions the earth has circled around the sun since we were born. 

It is not time itself that ages us but rather “wear and tear”. Biological age measures wear and tear. It is a more comprehensive and personal measure of health than chronological age and a better predictor of longevity. A 2023 study established that biological age varies and that a temporary increase, for example during surgery and stress, is reversed when you have recovered

Diseases that are linked to lifestyle and accumulate with age, such as such as cardiovascular disease, obesity, dementia and chronic kidney disease are driven by “wear and tear”. This result in inflammation, altered composition of the gut microbiota and increased oxidative stress. Oxidative stress is when there are too many free radicals (unstable atoms that damage cells) in your body. 

New science based on epigenetic clocks and lessons from hibernating animals could help us to treat patients who have diseases driven by “wear and tear”. We could use drugs that may slow down ageing. 

For example, metformin is the main first-line medication for the treatment of type-2 diabetes. It regulates inflammation, insulin-sensitivity and slows down DNA damage caused by oxidative-stress. There is growing evidence it may help manage other “wear and tear” diseases such as cardiovascular disease and long term use of the drug may be associated with lower cognitive impairment

Learning more about hibernation may benefit human medicine for the treatment of traumatic brain injuriessevere blood loss, preservation of muscle and bone mass and providing better protection during organ transplantation.

A 2018 study found that mimicking hibernation conditions for the storage of renal grafts from deceased donors seemed to improve their preservation. Muscular skeletal degeneration is often determined by genes, but these genes seemed to be deactivated in hibernating bears

Animals and longevity

There are long-lived, non-hibernating animals we can learn from too such as the Greenland shark, naked mole rat, Icelandic clam and Rougheye rockfish. These species have developed superior mechanisms that protect them against ageing. It seems like protection against inflammation, oxidative stress and modifications of proteins that happen with age are mechanism that in general benefit all long-lived animals. 

Genetic studies of rougheye rockfish, which can live for over 200 years, suggest that a food group called flavonoids is related to longevity. Citrus fruits, berries, onions, apples and parsley are high in flavonoids, which have anti-inflammatory properties and protect against organ damage, for example, from chemicals or ageing. 

The 2023 study of rougheye rockfish found that one set of its genes which could be linked to longevity were associated with flavonoid metabolism. So a long-lived fish may have something to teach us about what to eat to live longer. 

Lessons from nature and hibernating animals tell us that preserving cells, regulation metabolism and genetic adaptions play key roles in longevity. Our life style and eating habits are our best tools to mimic some of these mechanisms. 

Forty winks

There is still so much we don’t understand about hibernation but we do know that normal sleep is connected to longevity too. For example, a March 2023 study showed that with good quality sleep, you can add five years to the life of men and two and a half years if you are a woman. The researchers defined good quality sleep as getting seven to eight hours of sleep per day, not needing sleep medication and waking up feeling rested at least five days a week. 

Animals have huge variations in their sleeping patterns, from bears and marmots hibernating for eight months of the year to elephants that get only two hours a day.
How elephants can become so old while sleeping so little is still a mystery to scientists. 

Finding out how nature resolved these extremes may help scientists decipher new ways to improve human health.

Contributor

Recently Published

Key Takeaway: A study has found that humble leaders can become more promotable by growing others through a “humility route”. Human capital theory suggests that employees’ value can be enhanced by investing in their knowledge, skills, and abilities. Humble leaders focus on the learning and growth of their followers, creating human capital value for themselves. […]

Top Picks

Key Takeaway: The current economic climate is particularly concerning for young people, who are often financially worse off than their parents. To overcome this, it is important to understand one’s financial attachment style, which can be secure, anxious, or avoidant. Attachment theory, influenced by childhood experiences and education, can help shape one’s relationship with money. […]
Key Takeaway: Wellness culture, which claims to provide happiness and meaning, has been criticized for its superficial focus on superficial aspects like candles and juice cleanses. Psychological research suggests that long-term wellbeing comes from a committed pursuit of both pleasure and meaning. Martin Seligman’s Perma model, which breaks wellbeing into five pillars: positive emotions, engagement, […]
Key Takeaway: Quantum computing, which uses entanglement to represent information, has the potential to revolutionize everyday life. However, the development of quantum computers has been slow due to the need to demonstrate an advantage over classical computers. Only a few notable quantum algorithms have been developed, such as the BB84 protocol and Shor’s algorithm, which […]
Key Takeaway: China’s leaders have declared a GDP growth target of 5% in 2024, despite facing economic problems and a property crisis. The country’s rapid economic growth has been attributed to market incentives, cheap labor, infrastructure investment, exports, and foreign direct investment. However, none of these drivers are working effectively. The government’s determination to deflate […]
Key Takeaway: Neuralink, founded by Elon Musk, aims to implant a brain-computer interface (BCI) in people’s brains, allowing them to control computers or phones by thought alone. This technology holds the promise of alleviating human suffering and allowing people with disabilities to regain lost capacities. However, the long-term aspirations of Neuralink include the ability to […]

Trending

I highly recommend reading the McKinsey Global Institute’s new report, “Reskilling China: Transforming The World’s Largest Workforce Into Lifelong Learners”, which focuses on the country’s biggest employment challenge, re-training its workforce and the adoption of practices such as lifelong learning to address the growing digital transformation of its productive fabric. How to transform the country […]

Join our Newsletter

Get our monthly recap with the latest news, articles and resources.

Login

Welcome to Empirics

We are glad you have decided to join our mission of gathering the collective knowledge of Asia!
Join Empirics