Key Takeaway:


Water is needed for development, production and consumption, yet we are overusing and polluting an unsubstitutable resource and system. 

Eight safe and just boundaries for five domains (climate, biosphere, water, nutrients and aerosols) have been identified beyond which there is significant harm to humans and nature and the risk of crossing tipping points increases. Humans have already crossed the safe and just Earth System Boundaries for water

To date, seven of the eight boundaries have been crossed, and although the aerosol boundary has not been crossed at the global level, it has been crossed at city level in many parts of the world.

For water, the safe and just boundaries specify that surface water flows should not fluctuate more than 20 per cent relative to the natural flow on a monthly basis; while groundwater withdrawal should not be more than the recharge rate. Both of these boundaries have been crossed.

These thresholds have been crossed even though the minimum needs of the world’s poorest to access water and sanitation services have not been met. Addressing these needs will put an even greater pressure on already-strained water systems.

AI’s potential

Technological optimists argue that artificial intelligence (AI) holds the potential to solve the world’s water problems. Supporters of AI argue that it can help achieve both the environmental and social Sustainable Development Goals (SDGs), for example by designing systems to address shortages of teachers and doctors, increase crop yields and manage our energy needs.

In the past decade, research into this area has grown exponentially, with potential applications including increasing water efficiency and monitoring in agriculturewater security and enhancing wastewater treatment

AI-powered biosensors can more accurately detect toxic chemicals in drinking water than current quality monitoring practices.

The potential for AI to change the water used in agriculture is evident through the building of smart machines, robots and sensors that optimize farming systems. 

For example, smart irrigation automates irrigation through the collection and analysis of data to optimize water usage by improving efficiency and detecting leakage

rows of lettuce beds
A smart irrigation system for green oak lettuce in Chiang Mai, Thailand. (Shutterstock)

As international development scholars who study the relationship between water, the environment and global inequality, we are curious about whether AI can actually make a difference or whether it exacerbates existing challenges. Although there is peer-reviewed literature on the use of AI for managing water and the SDGs, there are no peer-reviewed papers on the direct and indirect implications of AI on water use. 

AI and water use

Initial research shows that AI has a significant water footprint. It uses water both for cooling the servers that power its computations and for producing the energy it consumes. As AI becomes more integrated into our societies, its water footprint will inevitably grow. 

The growth of ChatGPT and similar AI models has been hailed as “the new Google.” But while a single Google search requires half a millilitre of water in energy, ChatGPT consumes 500 millilitres of water for every five to 50 prompts

AI uses and pollutes water through related hardware production. Producing the AI hardware involves resource-intensive mining for rare materials such as silicon, germanium, gallium, boron and phosphorous. Extracting these minerals has a significant impact on the environment and contributes to water pollution

Semiconductors and microchips require large volumes of water in the manufacturing stage. Other hardware, such as for various sensors, also have an associated water footprint.

Data centres provide the physical infrastructure for training and running AI, and their energy consumption could double by 2026. Technology firms using water to run and cool these data centres potentially require water withdrawals of 4.2 to 6.6 billion cubic metres by 2027.

an aerial view of uniformly arranged rectangular buildings
Microsoft data centers located in Noord-Holland, The Netherlands. (Shutterstock)

By comparison, Google’s data centres used over 21 billion litres of potable water in 2022, an increase of 20 per cent on its 2021 usage.

Training an AI at the computing level of a human brain for one year can cost 126,000 litres of water. Each year the computing power needed to train AI increases tenfold, requiring more resources. 

Water use of big tech companies’ data centres is grossly underestimated — for example, the water consumption at Microsoft’s Dutch data centre was four times their initial plans. Demand for water for cooling will only increase because of rising average temperatures due to climate change.

Conflicting needs

The technology sector’s water demand is so high that communities are protesting against it as it threatens their livelihoods. Google’s data centre in drought-prone The Dalles, Ore. is sparking concern as it uses a quarter of the city’s water. The Associated Press looks at Google’s water consumption in The Dalles, Ore.

Taiwan, responsible for 90 per cent of the world’s advanced semiconductor chip production, has resorted to cloud seeding, water desalination, interbasin water transfers and halting irrigation for 180,000 hectares to address its water needs

Locating data centres

As water becomes increasingly expensive and scarce in relation to demand, companies are now strategically placing their data centres in the developing world— even in dry sub-Saharan Africa, data centre investments are increasing

Google’s planned data centre in Uruguay, which recently suffered its worst drought in 74 years, would require 7.6 million litres per day, sparking widespread protest

What emerges is a familiar picture of geographic inequality, as developing countries find themselves caught in a dilemma between the economic benefits offered by international investment and the strain this places on local water resources availability. 

We believe there is sufficient evidence for concern that the rapid uptake of AI risks exacerbating the water crises rather than help addressing them. As yet, there are no systematic studies on the AI industry and its water consumption. Technology companies have been tightlipped about the water footprint of their new products. 

The broader question is: Will the social and environmental contributions of AI be overshadowed by its huge water footprint?

Contributor

Recently Published

Key Takeaway: A study has found that humble leaders can become more promotable by growing others through a “humility route”. Human capital theory suggests that employees’ value can be enhanced by investing in their knowledge, skills, and abilities. Humble leaders focus on the learning and growth of their followers, creating human capital value for themselves. […]

Top Picks

Key Takeaway: The current economic climate is particularly concerning for young people, who are often financially worse off than their parents. To overcome this, it is important to understand one’s financial attachment style, which can be secure, anxious, or avoidant. Attachment theory, influenced by childhood experiences and education, can help shape one’s relationship with money. […]
Key Takeaway: Wellness culture, which claims to provide happiness and meaning, has been criticized for its superficial focus on superficial aspects like candles and juice cleanses. Psychological research suggests that long-term wellbeing comes from a committed pursuit of both pleasure and meaning. Martin Seligman’s Perma model, which breaks wellbeing into five pillars: positive emotions, engagement, […]
Key Takeaway: Quantum computing, which uses entanglement to represent information, has the potential to revolutionize everyday life. However, the development of quantum computers has been slow due to the need to demonstrate an advantage over classical computers. Only a few notable quantum algorithms have been developed, such as the BB84 protocol and Shor’s algorithm, which […]
Key Takeaway: China’s leaders have declared a GDP growth target of 5% in 2024, despite facing economic problems and a property crisis. The country’s rapid economic growth has been attributed to market incentives, cheap labor, infrastructure investment, exports, and foreign direct investment. However, none of these drivers are working effectively. The government’s determination to deflate […]
Key Takeaway: Neuralink, founded by Elon Musk, aims to implant a brain-computer interface (BCI) in people’s brains, allowing them to control computers or phones by thought alone. This technology holds the promise of alleviating human suffering and allowing people with disabilities to regain lost capacities. However, the long-term aspirations of Neuralink include the ability to […]

Trending

I highly recommend reading the McKinsey Global Institute’s new report, “Reskilling China: Transforming The World’s Largest Workforce Into Lifelong Learners”, which focuses on the country’s biggest employment challenge, re-training its workforce and the adoption of practices such as lifelong learning to address the growing digital transformation of its productive fabric. How to transform the country […]

Join our Newsletter

Get our monthly recap with the latest news, articles and resources.

Login

Welcome to Empirics

We are glad you have decided to join our mission of gathering the collective knowledge of Asia!
Join Empirics