In June, an IBM computing executive claimed quantum computers were entering the โ€œutilityโ€ phase, in which high-tech experimental devices become useful. In September, Australiaโ€™s Chief Scientist Cathy Foley went so far as to declare โ€œthe dawn of the quantum eraโ€. 

This week, Australian physicist Michelle Simmons won the nationโ€™s top science award for her work on developing silicon-based quantum computers.

Obviously, quantum computers are having a moment. But โ€“ to step back a little โ€“ what exactly are they? 

What is a quantum computer?

One way to think about computers is in terms of the kinds of numbers they work with.

The digital computers we use every day rely on whole numbers (or integers), representing information as strings of zeroes and ones which they rearrange according to complicated rules. There are also analogue computers, which represent information as continuously varying numbers (or real numbers), manipulated via electrical circuits or spinning rotors or moving fluids.

In the 16th century, the Italian mathematician Girolamo Cardano invented another kind of number called complex numbers to solve seemingly impossible tasks such as finding the square root of a negative number. In the 20th century, with the advent of quantum physics, it turned out complex numbers also naturally describe the fine details of light and matter.

In the 1990s, physics and computer science collided when it was discovered that some problems could be solved much faster with algorithms that work directly with complex numbers as encoded in quantum physics. 

The next logical step was to build devices that work with light and matter to do those calculations for us automatically. This was the birth of quantum computing.

Why does quantum computing matter?

We usually think of the things our computers do in terms that mean something to us โ€” balance my spreadsheet, transmit my live video, find my ride to the airport. However, all of these are ultimately computational problems, phrased in mathematical language. 

As quantum computing is still a nascent field, most of the problems we know quantum computers will solve are phrased in abstract mathematics. Some of these will have โ€œreal worldโ€ applications we canโ€™t yet foresee, but others will find a more immediate impact.

One early application will be cryptography. Quantum computers will be able to crack todayโ€™s internet encryption algorithms, so we will need quantum-resistant cryptographic technology. Provably secure cryptography and a fully quantum internet would use quantum computing technology.

A microscopic view of a square, iridescent computer chip against an orange background.
Google has claimed its Sycamore quantum processor can outperform classical computers at certain tasks. Google

In materials science, quantum computers will be able to simulate molecular structures at the atomic scale, making it faster and easier to discover new and interesting materials. This may have significant applications in batteries, pharmaceuticals, fertilisers and other chemistry-based domains.

Quantum computers will also speed up many difficult optimisation problems, where we want to find the โ€œbestโ€ way to do something. This will allow us to tackle larger-scale problems in areas such as logistics, finance, and weather forecasting.

Machine learning is another area where quantum computers may accelerate progress. This could happen indirectly, by speeding up subroutines in digital computers, or directly if quantum computers can be reimagined as learning machines.

What is the current landscape?

In 2023, quantum computing is moving out of the basement laboratories of university physics departments and into industrial research and development facilities. The move is backed by the chequebooks of multinational corporations and venture capitalists. 

Contemporary quantum computing prototypes โ€“ built by IBMGoogleIonQRigetti and others โ€“ are still some way from perfection. 

Todayโ€™s machines are of modest size and susceptible to errors, in what has been called the โ€œnoisy intermediate-scale quantumโ€ phase of development. The delicate nature of tiny quantum systems means they are prone to many sources of error, and correcting these errors is a major technical hurdle.

The holy grail is a large-scale quantum computer which can correct its own errors. A whole ecosystem of research factions and commercial enterprises are pursuing this goal via diverse technological approaches. 

Superconductors, ions, silicon, photons

The current leading approach uses loops of electric current inside superconducting circuits to store and manipulate information. This is the technology adopted by GoogleIBMRigetti and others. 

Another method, the โ€œtrapped ionโ€ technology, works with groups of electrically charged atomic particles, using the inherent stability of the particles to reduce errors. This approach has been spearheaded by IonQ and Honeywell

Illustration showing glowing dots and patterns of light.
An artistโ€™s impression of a semiconductor-based quantum computer. Silicon Quantum Computing

A third route of exploration is to confine electrons within tiny particles of semiconductor material, which could then be melded into the well-established silicon technology of classical computing. Silicon Quantum Computing is pursuing this angle.

Yet another direction is to use individual particles of light (photons), which can be manipulated with high fidelity. A company called PsiQuantum is designing intricate โ€œguided lightโ€ circuits to perform quantum computations. 

There is no clear winner yet from among these technologies, and it may well be a hybrid approach that ultimately prevails.

Where will the quantum future take us?

Attempting to forecast the future of quantum computing today is akin to predicting flying cars and ending up with cameras in our phones instead. Nevertheless, there are a few milestones that many researchers would agree are likely to be reached in the next decade.

Better error correction is a big one. We expect to see a transition from the era of noisy devices to small devices that can sustain computation through active error correction.

Another is the advent of post-quantum cryptography. This means the establishment and adoption of cryptographic standards that canโ€™t easily be broken by quantum computers.

Commercial spin-offs of technology such as quantum sensing are also on the horizon.

The demonstration of a genuine โ€œquantum advantageโ€ will also be a likely development. This means a compelling application where a quantum device is unarguably superior to the digital alternative.

And a stretch goal for the coming decade is the creation of a large-scale quantum computer free of errors (with active error correction). 

When this has been achieved, we can be confident the 21st century will be the โ€œquantum eraโ€.

Contributor

Recently Published

Key Takeaway: A study has found that humble leaders can become more promotable by growing others through a “humility route”. Human capital theory suggests that employees’ value can be enhanced by investing in their knowledge, skills, and abilities. Humble leaders focus on the learning and growth of their followers, creating human capital value for themselves. […]

Top Picks

Key Takeaway: The current economic climate is particularly concerning for young people, who are often financially worse off than their parents. To overcome this, it is important to understand one’s financial attachment style, which can be secure, anxious, or avoidant. Attachment theory, influenced by childhood experiences and education, can help shape one’s relationship with money. […]
Key Takeaway: Wellness culture, which claims to provide happiness and meaning, has been criticized for its superficial focus on superficial aspects like candles and juice cleanses. Psychological research suggests that long-term wellbeing comes from a committed pursuit of both pleasure and meaning. Martin Seligman’s Perma model, which breaks wellbeing into five pillars: positive emotions, engagement, […]
Key Takeaway: Quantum computing, which uses entanglement to represent information, has the potential to revolutionize everyday life. However, the development of quantum computers has been slow due to the need to demonstrate an advantage over classical computers. Only a few notable quantum algorithms have been developed, such as the BB84 protocol and Shor’s algorithm, which […]
Key Takeaway: China’s leaders have declared a GDP growth target of 5% in 2024, despite facing economic problems and a property crisis. The country’s rapid economic growth has been attributed to market incentives, cheap labor, infrastructure investment, exports, and foreign direct investment. However, none of these drivers are working effectively. The government’s determination to deflate […]
Key Takeaway: Neuralink, founded by Elon Musk, aims to implant a brain-computer interface (BCI) in people’s brains, allowing them to control computers or phones by thought alone. This technology holds the promise of alleviating human suffering and allowing people with disabilities to regain lost capacities. However, the long-term aspirations of Neuralink include the ability to […]

Trending

I highly recommend reading the McKinsey Global Instituteโ€™s new report, โ€œReskilling China: Transforming The Worldโ€™s Largest Workforce Into Lifelong Learnersโ€, which focuses on the countryโ€™s biggest employment challenge, re-training its workforce and the adoption of practices such as lifelong learning to address the growing digital transformation of its productive fabric. How to transform the country […]

Join our Newsletter

Get our monthly recap with the latest news, articles and resources.

Login

Welcome to Empirics

We are glad you have decided to join our mission of gathering the collective knowledge of Asia!
Join Empirics